Telegram Group & Telegram Channel
Обратная сторона игры в Atari

Посмотрим на кривую обучения, приведённую в статье, для игры Breakout - это та, где нужно отбивать красный "кубик" доской, которую вы перемещаете в нижней части экрана.

Одна эпоха по оси времени - это 50000 апдейтов весов, то есть нужно больше миллиона апдейтов, чтобы выучить элементарную стратегию - поддерживать доску на одном уровне с мячом.

В режиме Supervised learning при размеченном датасете мы бы могли обучить такую нейросеть гораздо быстрее и используя гораздо меньше данных - всего для обучения в каждой игре было сыграно по 10 миллионов кадров. Но в рамках поставленной задачи предполагается, что такого датасета у нас нет, и нейросеть учится сама методом проб и ошибок, что и делает процесс обучения чудовищно жадным в плане данных.

Отмечу, что революции в data-efficiency с тех пор не произошло, и все следующие годы количество данных для обучения только росло. Но про те безумные числа мы поговорим в другой раз.

Конечно, это не приговор - всего лишь нужно научиться переносить знания между доменами и средами. А это уже совсем другая история.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/19
Create:
Last Update:

Обратная сторона игры в Atari

Посмотрим на кривую обучения, приведённую в статье, для игры Breakout - это та, где нужно отбивать красный "кубик" доской, которую вы перемещаете в нижней части экрана.

Одна эпоха по оси времени - это 50000 апдейтов весов, то есть нужно больше миллиона апдейтов, чтобы выучить элементарную стратегию - поддерживать доску на одном уровне с мячом.

В режиме Supervised learning при размеченном датасете мы бы могли обучить такую нейросеть гораздо быстрее и используя гораздо меньше данных - всего для обучения в каждой игре было сыграно по 10 миллионов кадров. Но в рамках поставленной задачи предполагается, что такого датасета у нас нет, и нейросеть учится сама методом проб и ошибок, что и делает процесс обучения чудовищно жадным в плане данных.

Отмечу, что революции в data-efficiency с тех пор не произошло, и все следующие годы количество данных для обучения только росло. Но про те безумные числа мы поговорим в другой раз.

Конечно, это не приговор - всего лишь нужно научиться переносить знания между доменами и средами. А это уже совсем другая история.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/19

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

Knowledge Accumulator from de


Telegram Knowledge Accumulator
FROM USA